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OPTIMAL CONTROL OF PARABOLIC PDE BY A
COMBINED ADOMIAN/ALIENOR MODEL

NADIA AMEL MESSAOUDI, SALAH MANSEUR, AND MOSTAFA BLIDIA

ABSTRACT. This article presents a numerical solution to the optimal
control problem governed by linear parabolic differential equation (PDE),
generally solved by direct numerical method. It consists in choosing
the controls in a finite dimension space (piecewise constants) by the
discretization of the time interval. The optimal control problem is ap-
proached by an optimisation problem under constraints. To solve this
problem, two combined mathematical methods are used : the Adomian
decomposition method and the Alienor method. Firstly, the Adomian
method is used to solve the PDE by explicitly expressing the solution
as convergence series; depending on controls and requires no discretiza-
tion in space and in time, contrary to numerical methods. Secondly, the
Alienor method reduces the problem of minimization of a function with
several variables to a function with one variable, unlike the iterative
optimisation methods which require initialization of the initial vector.
An application of this Adomian /Alienor combined model to solve the
PDE is performed, and results are compared with those obtained by
Adomian/Levenberg-Marquardt method.

2000 MATHEMATICS SUBJECT CLASSIFICATION.
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1. INTRODUCTION

Most of the phenomena in real world ( physics, mechanics, biology, eco-
nomics and finance) are described through mathematical models in a form
of Partial Differential Equations (PDEs).

It is often a matter of studying the possibility of acting on the system in
order to determine the way it operates best to attain a desired goal, otherwise
stabilising is to make it insensitive under some disturbances. This is the
subject of control theory. In biology, the optimal control can be applied to
concrete real case studies such as controlling the growth of some populations
(cancer cells, bacteria, viruses... etc.) using chemical treatments, such as
cancer chemotherapy. So, the objective here is to minimise the number of
cancer cells with an optimal therapeutic doses.

The problem of optimal control systems governed by partial differen-
tial equations (PDE) has been extensively studied in the literature (see
[1],12],[3]). J.Lions [1] has given the methods to solve the optimal control
problem of systems governed by PDE.

In [4], two numerical methods for solving the optimal control problem are
presented : the direct methods, and indirect methods. The direct methods
consist of discretising the state variable and control, then approximating the
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optimal control problem to an optimisation problem. The indirect methods
involve solving the problem numerically using a shooting method, and the
problem of boundary values is obtained by applying the maximum principle.

The presented work proposes to use a direct method to compute the op-
timal control of a system governed by a linear parabolic PDE. The controls
are chosen in a finite dimensional space (piecewise constant functions), the
Adomian decomposition method (ADM) is applied to approximate the so-
lutions of the proposed equation and combined with the Alienor method
to resolve the optimisation problem. In ([5],[6],[11]), the ADM is used to
solve the linear and nonlinear systems (differential, partial, algebraic, in-
tegral,...etc.), where the solution is an analytical function given as explicit
series forms dependent on the parameters. This method is based on the de-
composition of the nonlinear part of the system, using special polynomials
called Adomian polynomials which are calculated by recursive formulas [5].
The solution of the parabolic PDE is given as small intervals of time, and
the optimal control is reduced to a minimised problem, of ”n” variables.
We have used the Alienor method ([5],[14],[9]) to reduce the optimisation
problem of n variables at one variable optimisation problem. This method is
based on the reduced transformation to constuct the densities curves of R™
space. Therefore, the combination of these two methods can transform the
optimal control problem of a system governed by PDE into a minimisation
problem of a function at single variable.

This article is organised as follows, in the second section we present the
formulation of optimal problem governed by a parabolic PDE. In section 3,
we developed, the mathematicals methods of ADM and Alienor. Section 4
presents a numerical method for solving the optimal control problem gov-
erned by a parabolic equation, and demonstrates how the optimal control
problem of parabolic PDE is reduced to a classical constrained optimisa-
tion problem of one variable problem by using the combined method Ado-
mian/Alienor. An application of problem to the equation is given in section
5, and we conclude with a comparative study of the results.

2. PROBLEM STATEMENT

Consider the linear parabolic equation with a control function ¢(t) [12] :

ov o*V .
(1) FTRr ) +4¢V in (z,t) € Qx 10, T
) V(z,0) = f(z), =€
(3) Vix,t) =0 ,x €0, 0<t<T
Where :

Q : is a bounded domain of R™ ( n=1,2,3),

V(z,t) is a state function,

« is a non-null coefficient,

f is a strictly positive function on €,

q(t) is a function of control.

The problem (1)-(2)-(3) has a positive non-null solution [10].
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Often, these equations appear in different real phenomena, like a sub-
stance diffusing in chemistry, water pollution (river, layerphrenic,...) stud-
ies. Also in biology, the dynamics of gas in the breathing process of man
and animal [5]...etc.

In biology, for example, the control g(t) represents the amount of the
therapeutic drug to affect the tumour during the interval [0,T], where T
is set a priori. In this phenomenon, the optimal control problem can be
reformulated as follows:

We seek out the control ¢(¢) solution of :

(4) MinJ(q)

where :
T
J(g) = / /0 oV (2, 8), q(¢))deds

and g and T are known, w is a subdomain of 2.
The set of feasible controls Q may be a space or a closed convex sub set.
V(z,t,q) denotes the solution with a parameter ¢ of the system (1)-(2)-
(3).
It can be assumed that ¢(t) is bounded and satisfies the inequation (5):

(5) a<qt)<b

where a,b € RT.
Often, this problem is solved by traditional numerical methods : direct meth-
ods or indirect methods [4]. We have proposed,in our work, a direct method
using the combined mathematical methods of Adomian decomposition and
Alienor.

3. MATHEMATICALS METHODS

3.1. Adomian decomposition method. This method is used to solve
linear and nonlinear functional equations of different kinds : differential,
boundary value problem, integrals, algebraic,... etc.

Consider the following functional equation [5]:

(6) z—N(z)=yg

where N represents a non-linear operator (differential, boundary value
problem, integral, ...), g is a known function, and z is the solution of (6).

The ADM develops the solution z ( if it exists ) into the series form
below :

(7) T = le
=0

moreover, the non-linear operator N(z) can be decomposed into the fol-
lowing series form :

(8) N(z) = ZAi(xo,xl./...,xi)
=0

where A; are the Adomian polynomials dependent on xg, z1, ..., z; (see [5]).
It is assumed that these two series are convergent.
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By putting the expressions (7) and (8) into (6), we get :

9) - Ai=g
i=0 =0

By identifying the two sides of equation (9), it yields :

To =g
Tl = Ag(l’o)
(10) z2 = A1(2o, 71)

zit1 = Ai(xo, ..., )

We can easily calculate the series terms of the series z; of our solution,
we have just gives the polynomials Adomian, by the following expressions
[5]:

L d N
-4 i, —
An_nUMHWZ;ALﬂhmn_OJJPH

Y.Cherruault and K.Abbaoui have proved that the series Y z; converges
if the non-linear operator N satisfies certain conditions (see [5]). Adomian
polynomials exist and the series > A; converges ([5]), practical formulas for
these polynomials are proposed (see [5], [8]).

3.2. Alienor method. The multidimensional Alienor global optimisation
method has been elaborated in the 1980s by Cherruault and Guillez ([7],[8]).
The Alienor method is based on the idea of reducing a several variables
minimisation problem to a single variable minimisation problem allowing
the use of well-known powerful methods and techniques available in the
case of a single variable.

The basic idea of this method is the densification of space R™ by so-called
a-denses curves.

Let us first recall a definition of a- density.

Definition:

A curve h defines : A = [0, M] — ﬁl[ai,bi]
i=

is called o — dense in Z‘1311 [a;, b;], if for any w € 2‘1311 [a;, b;] there exists § € A
such that :
(11) d(w, h(f)) <
where d is the Euclidean distance in R”. The number « is a real strictly
positive and assumed very small compared to the dimensions of the hyper-

n
rectangle '1:11 [ai, b;].
The Alienor reducing transformation method can be summarized as follows.
It is asked for solving the global minimisation problem :
(12) Min  J(x1,29,...,2)

L1,22;..,Tn

where J is continuos function on R".
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We seek out the global minimum of J, such that it satisfies the following
condition :

(13) lim J(x1,...,2p) = +00

34422 —o0

By putting the variables z;, i = 1,..,n expresses as follows, into the
problem (12):
(14) .'I}Z:hz(e) 020,1':1,...,71

where h; (§) € C™ are the functions called reducing transformation,
such that a parameterized curve h(0) = (h1(0),...,h, (0)) is a-dense in

n
11 [a;, b;]. Consequently, the minimisation problem (12) is then approxi-

mated by the problem of minimisation at single variable :

(15) oeidin 7 ©)

where J* (0) = J (h1 (0),h2 (0),...,hn (0)) . Omaqx is the supremum of the
definition domain of the function h when it a-densities the hyperrectangle.

In the basic method, the unidimensional minimisation problem (15) is
solved by discretizing the interval [0, Omax] via a chosen step Af. Then we
look for the minimum of the finite set {J*(0),k = 0,1,..., N} where 0,
01,..., On are the discretized points. Obviously, the densification parameter
«a and the step A are chosen in such a way that the global minimum is
obtained with the desired accuracy ¢ [15].

Y.Cherruault in 1999 [8], has proved that any solution of (15) is an ap-
proximation of the solution of (12). We can ensure that the global minimum
of J*() is a good minimum approximation of problem (12) via the local
variations method [5].

It is possible to have the global minimum of a functional at single variable
by the Optimisation Preserving Operators (O.P.O) [9] in order to avoid
finding the local minima and to interest only on the global minimum.

4. NUMERICAL METHOD OF OPTIMAL CONTROL

A numerical direct method ([4]) is presented in two stages to solve the
optimal control problem governed by a linear parabolic PDE. The first step
consists of transforming the optimal control into a constrained optimisation
problem. In the second stage, we solve this problem by an appropriate
method.

The aim of this presented work is to combine two methods : ADM and
Alienor. They allow to reduce the multidimensional minimisation problem
depend explicitely on the controls to unidimensional minimisation problem.

The procedure is as follows :

Recall that it is possible to determine the optimal control ¢(¢) minimising
the following creteria :

(16) MinJ (2)

where : J(q) = [, fOT g(V(z,t),q(t))dzds
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V(t) and ¢(t) satisty the following PDE :

(17) { Eng’t) = aai’gg,t) + ¢V (z,t) dans Q x 10,77
V(z,0) = f(z) ,ze€Q
We subdivide the interval [0, 7] on time subintervals of uniform size At .
Given a parameter N (N > 0),we set:

At =

> 2]

and denotes by tx = k.At for k=0, ...,
The control ¢(t) is approximated by piecewise constants values on each
interval [tg,tga1] :

(18) q(t) =qg, tE€ [tg,trr1] and k=0,..,N -1
q(t) is a feasible control satisfying the following constraint :
(19) a<q(t)<b
For ¢, verifying (19), we get :
(20) a<q<b, fork=0,..,.N -1

We use the ADM on each sub-interval [tg,tr11] to solve the equation
(17). By substituting ¢(¢) by the formulae (18) into (17), then integrating
between t;, and g1, we obtain the terms of solution [16]:

(21)

n
Va(@,t,q0, -, q1) = Y Cha" PR(Ly )" L PV (w,t4) = (L, )™ (@Laatq)"V (2, 1)
p=0

where V(z,ty) = f(z) , V(z,tx) depends of controls go,qi,..,qx—1 and

r

t
(LyHr = {Ofg() dsdr dr is the n th integration order.

The truncated Adomian series in interval [tx, tx.1] is given as follows :

(22)
S S (t o tk)n
V(k) (.’1?., tv q) = Z Vn('rv t7 q0, -+, qk) = Z 7'(04Lm+(1k)nv($, tk7 q0,491, -+, qk)
n!
n=0 n=0
This solution explicitly depends on qq, q1, .., Gk
The requirements reattachment of the series solution are needed to pro-

ceed at the initialized of the next step, then the first term of the Adomian
solution is calculated as follows :

(23) Volz, t =t,) = V¥ (2, t = t;,)

By substituting the expression (22) into the objective function (16), we
get the following approximation :

N-1
(24) J =~ ng(QO’(Jh"' 7%)
k=0
where

le+1
gk(Qqulf"' MZk) :/ / g(vk(xﬁqu(h(hv"' 7qk))d(11d8

wtk
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with N.At=T.
The optimal control is therefore approximated by :

N-1
(25) Min Jx~ Min > gi(q.qi,--,qn-1)
k=0

q0:915--54N -1 q0,915--5gN -1

(26) Such as gy, € [a, b

It is a minimisation problem with N unknown variables on [a,b]. These
variables can be reduced by Alienor (or variants) with a single variable 6.
The Alienor transformations are defined for parameters of control as follows:

(27) qr = hi(0), k=0,..,N —1

The transformation h;(6) is chosen such a way that it densifies the space
RN,

Substituting (27) into the function (25), the global minimum problem of

the problem (25) is approached by a minimisation problem of a function
with one variable :

(28) MoinJ*(G)
N-1
where : ‘]*(0) = E gk(ho(e)v 7hN—1(9))
k=0
The function J*(6) is continuous on [ 0, fp.x] and attain at least one
minimum on [ 0, Omax]-
5. APPLICATION TO THE PARABOLIC EQUATION

5.1. Problem statment. Consider the following linear parabolic PDE [12]:

oV(xt) _ V()

(29) T 8352, +qV(z,t), (x,t) €0,1[ x ]0,T
(30) V(z,0) = f(z), = €]0,1]
(31) V(0,t)=0 O<t<T

where V(z,t) is the concentration of a chemical substance may diffuse
into the blood through the lung-blood interface (or kidny, liver,..etc). The
unkown control variable ¢(t) of the equation (29) is a therapeutic drug.
Assume that the state equation has a positive single solution [10].
We seek the optimal drug therapeutic ¢(t) minimising the objective func-
tion :
T
(32) J= /(V(x*,t) — d)%dt
0
where 0 < ¢(t) < 1, dis a given positive constant and f is a given positive
function and continuous on [0, 1].
For a given ”d”; the method consists of finding a control function ¢(t) so

that the concentration V(z,t) of a chemical substance remains close to the
value”d” during [0, 7] at the point z*.
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In therapy, ¢(t) = 1 designates the maximum dose which can create unde-
sirable side effects on the human organism, however the low doses (¢(t) = 0)
will have no effect on the disease. We seek the optimal therapy, in order to
maintain an acceptable level the concentration of a chemical substance in
the blood taking into account side effects experienced by the patient.

5.2. Numerical results and discussion. We seek out to determine the
control function ¢(¢) minimising the criterion (32). The constants are fixed
cd=1,a=0.015T =1, 2 = 0.5. The initial condition is given by :
flz)=z,0<z<1.

We divide the time interval [0, 1] into N = 5 subintervals of equal length,
At = 0.2. The control function ¢(t) is approximated in the PDE (29) by the
constants g satisfying :

0<qe<l, k=0,.4

This PDE is solved by the ADM on the interval [0, T']. The truncated Ado-
mian solution at the odrer 2, depends explicitly on ¢,,q,, ..., ¢, and the time
variable ¢. This solution is substituted into the function (32), consequentely:

N-1
(33) qo,ql,]..v{é?E[O,l] d qt)»‘]lz\{lz]?E[U»l] g 9x(d0, a1 )
The problem (33) is minimised by the Alienor method with the following
transformation :
@ = 0
@ = %(1 —sin(2¥70)), k=1,.,4

e The numerical results

A similar study to this work was realised by Messaoudi and Manseur ([13])
to determine the optimal control of linear parabolic PDE, by minimising 5
times an objective function at a single variable ”¢q;”, over each time interval
[tk; tk+1lk=o0,...,a-

The table 1 presents a comparaison of results obtained by the combined
Adomian/Alienor method, Adomian/ ]g{ %')nl]J (gr) (see [13]) with those of

ar€[ 0,

Adomian/Levenberg-Marquardt for initial values of solution [0.8,0.5,0.8,0.7,0.01]:

TABLE 1. Values constants of control and the objective function

q | q Q2 q3 qa Valeur de J | Methods
0.9 10.795 | 0.976 | 0.789 | 0.028 | 0.0782 Adomian/Alienor
1 |1 1 0.714 |0 0.069 Adomian/ .M[z(')nl]J (qr) [13]
k€1 0,
1 |1 1 0.65 |0 0.068 Adomian/ Levenberg-Marquardt

The approximated values of optimal control are substitute in the solu-
tions of the linear parabolic PDE given by ADM to compare them with the
solutions of the equation when the control is maximum ¢(t) = 1.

The superposition curves of PDE solutions V (z,t,q) obtained by Ado-
mian/Alienor method (Black color), Adomian /Levenberg-Marquardt (in
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Red) and Adomian/ ]\/.[fz(')nl]J (gr) [13](in green) with the maximum dose
k€l 0,

(¢ = 1, blue points) at position z* is shown in Figure 1. From this figure,
we note that the optimal state V(x,¢, gopt) at the position z* is maintained
around the desired value ”d = 17.

The curve of the optimum control values obtained by the three methods
for a time step equal to At = 0.2 is shown in Figure 2.

o 02 04

FIGURE 1. Superposition of solutions curves V(z,t,q*) at
point z* = 0.5

0.4

0.2

0 02 04 , 06 08

FIGURE 2. Function of optimal controls

Discussion

We have used two optimisation methods to find the optimal control :
Alienor method and Levenberg-Marquardt method.

From the results shown in Table 1, it is found that the value of J given by
Levenberg-Marquardt after 9 iterations is minimum and the control values
are close to those obtained by Alienor.

The Levenberg-Marquardt method depends on the choice of initial values
of the control. When this choice is arbitrary, this method does not yield
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good results. If the starting values are well chosen, it makes a small number
of iterations, since at a large number of iterations we risk to diverge from the
optimal solution. All these drawbacks do not exist in the Alienor method.

Our method is more efficient than the one given by approach of [13],
because we seek out the global minimum on the all interval [0, 7], however
the approach of [13] gives a global minimum on each sub interval of time
[ths thra]-

Both approaches have achieved the desired objective. Now it is up to the
therapist to choose patient treatment. If he wanted to give treatment on
a period prescribed by the doctor, he would choose our methodology. Or,
if we calculate the optimum dose before each take of treatment on a small
interval of time , knowing this previous dose we can improve the next dose
and so on , up to the completion of treatment period, which corresponds to
the approach [13].

6. CONCLUSION

The optimal control problem of linear parabolic PDEs was investigated,
using a methodology based on the combination of Adomian and Alienor
methods. The method Adomian can express the solution of the equation
in the form of convergent series explicitly dependent on the controls and
that it requires no discretization in space and time relative to the finite
difference and elements finite numericals methods. Alienor method reduces
the problem of minimisation of several variables function with a problem
of minimisation of a single variable function. The combination of these
two methods can reduce the linear parabolic PDE control problem to an
optimisation problem of a single variable function.

An application to the problem of optimal therapy governed by parabolic
PDE is carry out and compared with other methods and the results obtained
are satisfying. According to the physical condition of a patient, we can
determine the corresponding optimal treatment.
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